# What Can Clinicians and Patients Expect from Healthpath Gut Health Testing?

0 /

The Healthpath Gut Test shows you what's going on in your gut. By looking at imbalances in bacteria, yeasts, parasites and other intestinal health biomarkers, you find out what's contributing to your symptoms. You also receive targeted diet, supplement and lifestyle recommendations to help you take back control.

### The biomarkers provide clinical information on three key areas:



## 1 | Digestion/Absorption

- pH
- Pancreatic elastase
- Zonulin

### 2 | Immune activity/Inflammation

- Calprotectin
- Haemoglobin
- Secretory IgA
- H. Pylori
- Archaea/methanogens
- E. Coli, Lactobacillus species, Enterococcus species
- Akkermansia muciniphila, Faecalibacterium prausnitzii



## **3** | Gut Microbiome/Mycobiome

- Microbiome diversity
- Enterotype
- Dysbiosis index
- Actinobacteria
- Bacteroidetes
- Firmicutes
- Proteobacteria
- Fusobacteria
- Verrucomicrobia
- Hydrogen-sulphide production
- Oxalate-degrading bacteria
- Yeasts/moulds
- Parasites
- Helminths

### Clinical Advantages of The Healthpath Gut Health Test qPCR Technology

This new method of analysis allows for a single sample. This makes the process easier for everyone, and it's particularly helpful for children and those struggling with diarrhoea or constipation.



| Stool properties |              |              |
|------------------|--------------|--------------|
| Colour           | $\checkmark$ | $\checkmark$ |
| Consistency      | $\checkmark$ | $\checkmark$ |
| рН               | $\checkmark$ | $\checkmark$ |

#### **Diversity:**

Your diversity is key, which is why our microbiome analysis covers hundreds of parameters. High bacterial diversity is known to protect against intestinal infections. But low bacterial diversity is common, especially in disease states or after a course of antibiotics. When diversity is low, opportunistic bacteria like pathogens, fungi and viruses can proliferate.

Rather than focusing on individual species, it's more important to investigate how the different bacteria interact. Together, they're responsible for a host of intestinal functions.

| Biodiversity    |              |              |
|-----------------|--------------|--------------|
| Diversity       | $\checkmark$ | $\checkmark$ |
| Dysbiosis index | $\checkmark$ | $\checkmark$ |

There are four large phyla (groups) of bacteria: Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. We also report on two smaller, clinically relevant phyla: Verrucomicrobia and Fusobacteria.

#### **Bacterial distribution**

| Actinobacteria                     | $\checkmark$ | $\checkmark$ |
|------------------------------------|--------------|--------------|
| Bacteroidetes                      | $\checkmark$ | $\checkmark$ |
| Firmicutes                         | $\checkmark$ | $\checkmark$ |
| Fusobacteria                       | $\checkmark$ | $\checkmark$ |
| Proteobacteria                     | $\checkmark$ | $\checkmark$ |
| Verrucomicrobia                    | $\checkmark$ | $\checkmark$ |
| Other                              | $\checkmark$ | $\checkmark$ |
| Firmicutes/<br>Bacteroidetes Ratio | $\checkmark$ | $\checkmark$ |

#### Enterotype:

Recent research suggests there are three different types of gut microbiomes, known as 'enterotypes'. Not only do the different enterotypes influence the absorption of minerals, but they also have different metabolic properties.

Advanced

Gut

Health

Test Pro

Gut

Health

Test

Enterotype 1 has high levels of Bacteroides species, which use fat and protein effectively. Enterotype 2 has a strong Prevotella population, which is better at metabolising carbohydrates. Enterotype 3 is the rarest enterotype. It has high levels of Ruminococcus flora, though we don't yet know which macronutrients it prefers.

Enterotypes aren't affected by a person's age or gender and they remain stable for years. They can be influenced, however, by a long-term change of diet and by taking prebiotics.

#### Enterotype

| 1, 2 or 3 | $\checkmark$ | $\checkmark$ |
|-----------|--------------|--------------|

#### Actinobacteria

| Bifidobacteria           |                       | $\checkmark$ | $\checkmark$ |  |  |
|--------------------------|-----------------------|--------------|--------------|--|--|
| Equol-producing bacteria |                       | $\checkmark$ | $\checkmark$ |  |  |
|                          | Adlercreutzia species |              | $\checkmark$ |  |  |
|                          | Eggerthella lenta     |              | $\checkmark$ |  |  |
|                          | Slackia species       |              | $\checkmark$ |  |  |

| Bacteroidetes |                  |              |              |
|---------------|------------------|--------------|--------------|
| Ba            | cteroides        | $\checkmark$ | $\checkmark$ |
| Prevotella    |                  | $\checkmark$ | $\checkmark$ |
|               | Prevotella copri | $\checkmark$ | $\checkmark$ |



#### Firmicutes:

Butyrate is a short-chain fatty acid that's produced by bacteria in the colon. It's quickly absorbed by the intestinal mucosa, which means the only reliable way to measure it is to look at the number of butyrate-producing bacteria.

Firmicutes bacteria are key butyrate producers. One of these, Faecalibacterium prausnitzii, typically makes up 5–15% of human intestinal bacteria. This important butyrate-producing species has anti-inflammatory properties—so much so that an absence of Faecalibacterium prausnitzii typically correlates with higher levels of inflammation.

#### **Firmicutes**

| Butyrate-producing bacteria |                                     | $\checkmark$ | $\checkmark$ |
|-----------------------------|-------------------------------------|--------------|--------------|
|                             | Faecalibacterium prausnitzii        | $\checkmark$ | $\checkmark$ |
|                             | Eubacterium rectale                 | $\checkmark$ | $\checkmark$ |
|                             | Eubacterium hallii                  | $\checkmark$ | $\checkmark$ |
|                             | Roseburia species                   | $\checkmark$ | $\checkmark$ |
|                             | Ruminococcus species                | $\checkmark$ | $\checkmark$ |
|                             | Coprococcus                         | $\checkmark$ | $\checkmark$ |
|                             | Butyrivibrio species                |              | $\checkmark$ |
|                             | Cl. butyricum                       |              | $\checkmark$ |
|                             | Total bacterial count               | $\checkmark$ | $\checkmark$ |
| Clostridia                  |                                     | $\checkmark$ | $\checkmark$ |
|                             | Clostridia total bacterial<br>count | $\checkmark$ | $\checkmark$ |
|                             | Clostridia cluster 1                | $\checkmark$ | $\checkmark$ |
|                             | Clostridia histolytium              |              | $\checkmark$ |
|                             | Clostridium perfringens             |              | $\checkmark$ |
|                             | Clostridium sporenges               |              | $\checkmark$ |
| Other                       |                                     |              | $\checkmark$ |
|                             | Christensenellaceae                 |              | $\checkmark$ |
|                             | Dialister invisus                   |              | $\checkmark$ |

| Fusobacteria          |              |              |
|-----------------------|--------------|--------------|
| Fusobacterium species | $\checkmark$ | $\checkmark$ |

| Verrucomicrobia         |              |              |
|-------------------------|--------------|--------------|
| Akkermansia muciniphila | $\checkmark$ | $\checkmark$ |

| Gut    | Advance |
|--------|---------|
| Health | Gut     |
| Test   | Health  |
| Test   | Test Pr |

#### Proteobacteria

| Potentially pathogenic bacteria |                              | ntially pathogenic bacteria | $\checkmark$ | $\checkmark$ |
|---------------------------------|------------------------------|-----------------------------|--------------|--------------|
|                                 | Haemophilus                  |                             | $\checkmark$ | $\checkmark$ |
|                                 | Acinetobacter                |                             | $\checkmark$ | $\checkmark$ |
|                                 | Escherichia coli biovare     |                             | $\checkmark$ | $\checkmark$ |
|                                 | Pro                          | oteus species               | $\checkmark$ | $\checkmark$ |
|                                 |                              | Proteus mirabilis           |              | $\checkmark$ |
|                                 | Kle                          | ebsiella species            | $\checkmark$ | $\checkmark$ |
|                                 |                              | Klebsiella pneumoniae       |              | $\checkmark$ |
|                                 | Enterobacter species         |                             | $\checkmark$ | $\checkmark$ |
|                                 | Se                           | rratia species              | $\checkmark$ | $\checkmark$ |
|                                 | На                           | fnia species                | $\checkmark$ | $\checkmark$ |
|                                 | Mc                           | organella species           | $\checkmark$ | $\checkmark$ |
|                                 | Campylobacter species        |                             |              | $\checkmark$ |
|                                 | Pro                          | ovidencia species           |              | $\checkmark$ |
|                                 | Cit                          | robacter species            |              | $\checkmark$ |
| Hi                              | Histamine-producing bacteria |                             | $\checkmark$ | $\checkmark$ |
| H2S production                  |                              | production                  | $\checkmark$ | $\checkmark$ |

#### Hydrogen-sulphide production:

Bacterial metabolism isn't always a good thing. Some bacteria reduce sulphate to create hydrogen sulphide—a toxic metabolic by-product that can damage the gut lining. The species Bilophila wadsworthii, Desulfomonas pigra and Desulfovibrio piger are thought to be potent hydrogen-sulphide developers.

|                            | Sulphate-reducing bacteria | $\checkmark$ | $\checkmark$ |
|----------------------------|----------------------------|--------------|--------------|
|                            | Desulfovibrio piger        |              | $\checkmark$ |
|                            | Desulfomonas pigra         |              | $\checkmark$ |
|                            | Bilophila wadsworthii      |              | $\checkmark$ |
| Oxalate-degrading bacteria |                            |              | $\checkmark$ |
|                            | Oxalobacter formigenes     |              | $\checkmark$ |

#### Archaea:

Archaea have been overlooked in microbiome studies until recently. New research suggests that 1) archaea are part of the microbiome in plants, animals and humans, 2) they form biofilms and 3) they interact with the human immune system. Some archaea are also methanogens, which may play a role in chronic constipation.

 $\checkmark$ 

 $\checkmark$ 

#### Archaea

Methanobrevibacter



| Immunogenically<br>effective bacteria |              |              |
|---------------------------------------|--------------|--------------|
| Escherichia coli                      | $\checkmark$ | $\checkmark$ |
| Enterococcus species                  | $\checkmark$ | $\checkmark$ |
| Lactobacillus species                 | $\checkmark$ | $\checkmark$ |

#### Mucin production/mucosal barrier:

A healthy colon has a protective mucous layer. If this layer is damaged—or only small amounts of mucous are produced—pathogens, pollutants and allergens can come into direct contact with the mucosa. This leads to inflammation.

The bacterium Akkermansia muciniphila is important because it encourages goblet cells to produce this protective mucous. Parts of this mucous also provide a special type of carbohydrate called oligosaccharides, which feed the bacteria that make gut-healing butyrate. With the right bacteria, it becomes a virtuous circle!

#### Mucin production/ mucosal barrier

| Akkermansia<br>muciniphila      | $\checkmark$ | $\checkmark$ |
|---------------------------------|--------------|--------------|
| Faecalibacterium<br>prausnitzii | $\checkmark$ | $\checkmark$ |

| Yeasts/moulds       |              |              |
|---------------------|--------------|--------------|
| Candida albicans    | $\checkmark$ | $\checkmark$ |
| Candida species     | $\checkmark$ | $\checkmark$ |
| Geotrichum candidum | $\checkmark$ | $\checkmark$ |
| Moulds              | $\checkmark$ | $\checkmark$ |

#### Functional markers

| Calprotectin                             | $\checkmark$ | $\checkmark$ |
|------------------------------------------|--------------|--------------|
| Haemoglobin in faeces<br>immunologically | $\checkmark$ | $\checkmark$ |
| Secretory IgA                            | $\checkmark$ | $\checkmark$ |
| Pancreatic elastase                      | $\checkmark$ | $\checkmark$ |
| Zonulin                                  |              | $\checkmark$ |

#### Gut Health Test Advanced Gut Health Test Pro

#### Parasites:

The Multiplex Real-time PCR (Multiplex quantitative real-time PCR) is a faster and more effective method for detecting parasites. This new test:

- provides reliable analysis, even with minimal attack
- gives no false positives with non-pathogens
- can be sent out with regular mail
- gives reliable results in symptom-free patients and also after treatment

#### **Parasites**

| Pathobionts           |                               | $\checkmark$ | $\checkmark$ |
|-----------------------|-------------------------------|--------------|--------------|
|                       | Blastocystis hominis          | $\checkmark$ | $\checkmark$ |
|                       | Dientamoeba fragilis          | $\checkmark$ | $\checkmark$ |
|                       | Helicobacter AG               | $\checkmark$ | $\checkmark$ |
| Pa                    | athogenic intestinal protozoa | $\checkmark$ | $\checkmark$ |
|                       | Giardia lamblia               | $\checkmark$ | $\checkmark$ |
|                       | Entamoeba histolytica         | $\checkmark$ | $\checkmark$ |
|                       | Cryptosporidium species       | $\checkmark$ | $\checkmark$ |
|                       | Cyclospora cayetanensis       | $\checkmark$ | $\checkmark$ |
| Helminths COMING SOON |                               |              | $\checkmark$ |
|                       | Taenia species                |              | $\checkmark$ |
|                       | Taenia solium                 |              | $\checkmark$ |
|                       | Taenia saginata               |              | $\checkmark$ |
|                       | Ascaris species               |              | $\checkmark$ |
|                       | Enterobius vermicularis       |              | $\checkmark$ |
|                       | Ancylostoma species           |              | $\checkmark$ |
|                       | Ancylostoma duodenale         |              | $\checkmark$ |
|                       | Hymenolepsis species          |              | $\checkmark$ |
|                       | Hymenolepsis nana             |              | $\checkmark$ |
|                       | Hymenolepsis diminuta         |              | $\checkmark$ |
|                       | Trichuris trichiura           |              | $\checkmark$ |
|                       | Necator americanus            |              | $\checkmark$ |
|                       | Strongyloides species         |              | $\checkmark$ |
|                       | Strongyloides stercoralis     |              | $\checkmark$ |
|                       | Microsporidia                 |              | $\checkmark$ |
|                       | Enterocytozoon species        |              | $\checkmark$ |
|                       | Encephalitozoon species       |              | $\checkmark$ |